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Abstract: By the methods of multivariate transition probability flow graphs, we define the multivariate geometric
distribution and the multi-parameter geometric distribution in independent trials, derive their generating functions,
probability distributions and the exact modes. For the multinomial distribution, we only get its mode in some cases.
It is still an open question for all other cases. Following the multinomial distribution, we state the definition of the
multivariate Poisson distribution, and then employ the joint probability generating function of multivariate Poisson
distribution to discuss its modes. We also prove that k is the unique mode of the geometric distribution of order k.
Finally, we propose some open questions to the interested readers as an objective and challenge for further study.
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1 Introduction

The mode is an important statistic of probability dis-
tribution. In the present paper, denote bymξ the mode
of Pn=̂P (ξ = n), n = 0, 1, · · · , i.e. the value of n
for which Pn attains its maximum. Similarly, denote
by mξn the mode of Pξn=̂P (ξ1 = l1, · · · , ξn = ln)
is the value of vector (l1, · · · , ln) for which Pξn at-
tains its maximum, where ξn = (ξ1, · · · , ξn) is a n-
dimensional random vector, (l1, · · · , ln) ∈ Zn. It is
well known that the modes of many usual distribution-
s have been obtained, such as the mode of geometric
distribution with parameter p is mξ,p = 1, the mode
of Poisson distribution with parameter λ (λ ∈ N) is
mξ,λ = λ or λ − 1. However, many modes of other
distributions presented in the statistical and probabili-
ty literature of recent decades are still awaiting discov-
ery. For example, the binomial distribution of order k
defined by Philippou and Makri [16], the geometric
distribution of order k, the Poisson distribution of or-
der k and the negative binomial distribution of order
k defined by Philippou [15], etc. Only the mode of
the Poisson distribution of order k was solved partial-
ly by Georghiou [9] and Philippou [17] in the above

distributions.
As a continuation of Shao’s work in [19, 20],

we define the new multivariate geometric distribution
denoted by MGn(p1, · · · , pn) in independent trials,
and then arrive at another new multi-parameter dis-
tribution denoted by G∗(p1, · · · pn). Besides this two
distributions, the present paper discusses multinomi-
al distribution Mn(p1, · · · , pn;N), multivariate Pois-
son distribution MPn(p1, · · · , pn) and Gk(p), i.e.
the geometric distribution of order k. We investi-
gate their generating functions, probability distribu-
tions and modes.

2 The modes of the multivariate
geometric distribution and multi-
parameter geometric distribution

In the present section, we define a new multivariate
geometric distribution, and from it, we obtain another
new generalized geometric distribution. Furthermore,
we discuss their probability and statistics properties
including the modes. We first introduce the theory of
multivariate transition probability flow graphs, one of
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the important tools being applied widely in the sam-
pling inspection field, to research the joint generating
function of the multivariate distribution.

The methods of transition probability flow graphs
are forceful in discussing some complicated discrete
random variables and have a long development his-
tory. The methods appeared, for example, in Mason
[13] and Koyama [12], and more recently in Fan [4,
5, 6] and Shao [19, 20]. Moreover, we conjecture that
the methods should also be applied to finance statistics
such as Shao [21] and Wang [22]. Based on decom-
posing the Markov chain formed by the variation of
a nonnegative integer-valued random variable, ascer-
taining the states and routes, and setting probability
functions to the routes, we can obtain a flow graph of
the process being similar to the transition probability
graph of the chain. Following the series-parallel oper-
ation rules, we can arrive at the probability generating
function of the random variable from the flow graph.
Note that if there are multiple random variables in the
transition probability flow graphs, we give the differ-
ent letters to the arguments of their transition proba-
bility functions and call it multivariate transition prob-
ability flow graphs (MTPFG). We provide a brief de-
scription for transition probability flow graphs as fol-
lows, for detail, the readers are referred to Fan [4, 5,
6] and Shao [19, 20].

Let τ be a nonnegative integer-valued random
variable with probability space (Ω,F , P ), set Bn =
{τ = n}, then for any a fixed B ∈ F , the transition
probability function of τ is defined by

Gτ (x;B) =

∞∑
n=0

P (BBn)x
n, |x| ≤ 1.

Especially, B = Ω yields the probability generating
function of τ as

Gτ (x) =

∞∑
n=0

P (τ = n)xn, |x| ≤ 1.

Consider a Markov chain that takes on countable
number of possible values. The transition process
from state s1 into s2 denoted by r : s1 ⇒ s2 is called
a route, and its transition time named step is a ran-
dom variable. By the Markovian property, the steps of
s1 ⇒ s2 and s2 ⇒ s3 are independent. The transition
probability function of the route r is defined by

Gr(x) =

∞∑
n=0

Pr(n)x
n, |x| ≤ 1,

where Pr(n) is the n−step transition probability of r.
The route from s1 into s3 by way of s2 denoted by

r1 ·r2 is called a series route if the routes r1 : s1 ⇒ s2
and r2 : s2 ⇒ s3 are independent. The route denoted
by r1 + r2 is called a parallel route of r1 : s1 ⇒ s2
and r2 : s1 ⇒ s2 if they are mutually exclusive. The
conclusion of Lemma 1 is obvious.

Lemma 1 [4, 20] Let Gr1(x) and Gr2(x) be respec-
tively the transition probability functions of the routes
r1 and r2, then Gr1·r2(x) = Gr1(x) · Gr2(x) and
Gr1+r2(x) = Gr1(x) +Gr2(x).

The route l : s1 ⇒ s2 is called a straight route
if no state is repeated in it. The route o : s1 ⇒ s1
is called a loop route on state s1 if s1 can be repeated
infinitely, and all the repeated routes are independent
identically distributed. For the straight route and loop
route, we have

Lemma 2 [20] Let Gl(x) be the transition proba-
bility function of the straight routes l : s1 ⇒ s2,
let Go1(x) and Go2(x) be respectively the transi-
tion probability functions of one repetition of the loop
routes O1 and O2 on state s1, then

Gl·o1(x) = Gl(x)/[1−Go1(x)],

Gl·(o1+o2)(x) = Gl(x)/[1−Go1(x)−Go2(x)].

Let τ1, · · · , τn be n random variables with joint
probability space (Ω,F , P ), forB ∈ F , the joint tran-
sition probability function of τn = (τ1, τ2, · · · , τn) is
given by

Gτn(x1, x2, · · · , xn;B)

=
∑

i1,··· ,in

P (τ1 = i1, · · · , τn = in;B)xi11 · · ·xinn ,

where |xk| ≤ 1, k = 1, · · · , n. When B = Ω,
Gτn(x1, · · · , xn; Ω) is called the joint probability
generating function of random vector τn, denoted by
Gτn(x1, · · · , xn).

Lemma 3 [20] Let Gτ (x1, x2, · · · , xn) be the joint
probability generating function of the random vector
τ =̂(τ1, τ2, · · · , τn), then Gτ (1, · · · , 1, xk, 1, · · · , 1)
is the probability generating function of τk, k =
1, 2, · · · , n, and Gτ (x, x, · · · , x) is the probability
generating function of τ =

∑n
j=1 τj , which does not

depend on the independence of τ1, τ2, · · · , τn.

Now we state the following definition of n-
dimensional geometric distribution and discuss its
properties.
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Definition 4 Assume that all possible outcomes of an
independent trial are the events ω1, · · · , ωn, which
are mutually exclusive with respective success prob-
abilities p1, · · · , pn satisfying

∑n
j=1 pj = 1. The

trial is continued until the occurrence of ω1 ∩ ω2 ∩
· · · ∩ ωn. Let ξ1, · · · , ξn denote the number of oc-
currences of ω1, · · · , ωn respectively, then the ran-
dom vector ξn=̂(ξ1, · · · , ξn) is said to be the n-
dimensional geometric distribution with parameter
vector (p1, · · · , pn), denoted by MGn(p1, · · · , pn).

Theorem 5 Let ξn = (ξ1, · · · , ξn) be a random vec-
tor distributed as MGn(p1, · · · , pn), then its join-
t generating function is

Gξn(x1, · · · , xn) =
∏n

j=1 pjxj

1−
n∑

j=1
pjxj +

n∏
j=1

pjxj

. (1)

Proof. By the methods of MTPFG, for the parameter
n = 3, the trial process starts at the beginning state
B, if the event ω1 occurs, then it enters state s1 with
the transition probability function p1x1, or lese it cir-
cles repeatedly in state B with the probability func-
tion p2x2 + p3x3. In state s1, the process will enter
state s2 with function p2x2 if ω2 occurs, if not, it will
come back to state B with function p3x3 if ω3 occurs
or circles in state s1 with function p1x1 if ω1 occurs.
In state s2, the process will enter the ending state E
with function p3x3 to finish if ω3 occurs, otherwise,
it will come back to state s1 with function p1x1 if ω1

occurs, or to state B with function p2x2 if ω2 occurs.
Hence, we get the multivariate transition probability
flow graphs of MG3(p1, p2, p3) in Figure 1.

Figure 1: The MTPFG of MG3(p1, p2, p3)

By Lemmas 1 and 2, following Figure 1, we get
the transition probability functions of the loop route
in state B and state s1 denoted respectively by CB(x)
and Cs1(x) as follows

CB(x) = p2x2 + p3x3 +
p1p3x1x3 + p1p

2
2x1x

2
2

1− p1x1 − p1p2x1x2
,

Cs1(x) = p1x1 + p1p2x1x2,

and the transition probability function of the straight
route from B to E is

L(x) = p1p2p3x1x2x3,

then the joint probability generating function of ξ3 =
(ξ1, ξ2, ξ3) is given by

Gξ3(x1, x2, x3) =
L(x)

(1− CB(x))(1− CS1(x))

=
p1p2p3x1x2x3

1− (p1x1 + p2x2 + p3x3) + p1p2p3x1x2x3
.

Similarly, for n = 4, we have the MTPFG of the
MG4(p1, p2, p3, p4) in Figure 2.

Figure 2: The MTPFG of MG4(p1, p2, p3, p4)

By Figure 2, we get the joint generating function
of ξ4 = (ξ1, ξ2, ξ3, ξ4) as follows

Gξ4(x1, x2, x3, x4)

=
p1p2p3p4x1x2x3x4

1−
4∑

j=1
pjxj + p1p2p3p4x1x2x3x4

.

Furthermore, generalizing the above from n = 3
and n = 4, we shall come to the joint generating func-
tion of ξn

Gξn(x1, x2, · · · , xn)

=
p1p2 · · · pnx1x2 · · ·xn

1− (p1x1 + · · ·+ pnxn) + p1 · · · pnx1 · · ·xn

=

n∏
j=1

pjxj

1−
n∑

j=1
pjxj +

n∏
j=1

pjxj

.

Theorem 5 has been proved. ⊓⊔

Remark 6 For the random vector ξn = (ξ1, · · · , ξn)
distributed as MGn(p1, · · · , pn), we have

Eξn = (Eξ1, · · · , Eξn)

=

(
p1

p1p2 · · · pn
, · · · , pn

p1p2 · · · pn

)
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and

V arξn = (V arξ1, · · · , V arξn)

=

(
p1(p1 − p1 · · · pn)
(p1p2 · · · pn)2

, · · · , pn(pn − p1 · · · pn)
(p1p2 · · · pn)2

)
.

Theorem 7 Let ξn = (ξ1, · · · , ξn) be a random vec-
tor distributed as MGn(p1, · · · , pn), then the proba-
bility distribution is given by

P (ξ1 = m1 + 1, · · · , ξn = mn + 1) =

min{m1,··· ,mn}∑
s=0

(
m1 + · · ·+mn − (n− 1)s

s,m1 − s, · · · ,mn − s

)
×

(−1)spm1+1
1 · · · pmn+1

n , (2)

where m1, · · · ,mn ∈ {0, 1, · · · }.

Proof. Following formula (1), we come to

Gξn(x1, x2, · · · , xn) =
n∏

j=1
pjxj

1−
n∑

j=1
pjxj +

n∏
j=1

pjxj

=

n∏
j=1

pjxj

∞∑
N=0

 n∑
j=1

pjxj −
n∏

j=1

pjxj

N

=
∞∑

N=0

∑
l1,··· ,ln+1∋

l1+···+ln+1=N

(
N

l1, · · · , ln+1

)
(−1)ln+1 ×

p
l1+ln+1+1
1 · · · pln+ln+1+1

n x
l1+ln+1+1
1 · · ·xln+ln+1+1

n

=
∑

l1,··· ,ln+1

(
l1 + · · ·+ ln+1

l1, · · · , ln+1

)
(−1)ln+1 ×

p
l1+ln+1+1
1 · · · pln+ln+1+1

n x
l1+ln+1+1
1 · · ·xln+ln+1+1

n

=
∑

m1,··· ,mn

min{m1,··· ,mn}∑
s=0

n∑
j=1

mj − (n− 1)s

s,m1 − s, · · · ,mn − s

 (−1)s

n∏
j=1

p
mj+1
j

n∏
j=1

x
mj+1
j .

Therefore

P (ξ1 = m1 + 1, · · · , ξn = mn + 1)

=

min{m1,··· ,mn}∑
s=0

(
m1 + · · ·+mn − (n− 1)s

s,m1 − s, · · · ,mn − s

)
×(−1)spm1+1

1 · · · pmn+1
n ,

where m1, · · · ,mn ∈ {0, 1, · · · }. This completes the
proof of Theorem 7. ⊓⊔

Theorem 8 Let mξn denote the mode of ξn distribut-
ed as MGn(p1, p2, · · · pn), then

mξn = (1, 1, · · · , 1).

Proof. We consider different cases:
Case I: When min{m1, · · · ,mn} = 0, by formula
(2), we have

P (ξ1 = m1 + 1, · · · , ξn = mn + 1) =

=

(
m1 + · · ·+mn

0,m1, · · · ,mn

)
pm1+1
1 · · · pmn+1

n

≤ (p1 + · · ·+ pn)
m1+···+mn · p1 · · · pn

= p1 · · · pn = P (ξ1 = 1, · · · , ξn = 1).

Case II: When min{m1, · · · ,mn} = 1, by formula
(2), we get

P (ξ1 = m1 + 1, · · · , ξn = mn + 1) =

=

(
m1 + · · ·+mn

0,m1, · · · ,mn

)
pm1+1
1 · · · pmn+1

n

−
(
m1 + · · ·+mn − n+ 1

1,m1 − 1, · · · ,mn − 1

)
pm1+1
1 · · · pmn+1

n

<

(
m1 + · · ·+mn

0,m1, · · · ,mn

)
pm1+1
1 · · · pmn+1

n

< p1 · · · pn = P (ξ1 = 1, · · · , ξn = 1).

Case III: When min{m1, · · · ,mn} ≥ 2, the similar
proof method of Case II in (2) yields

P (ξ1 = m1 + 1, · · · , ξn = mn + 1)

< P (ξ1 = 1, · · · , ξn = 1).

Together with Cases I, II and III, we conclude that
(1, · · · , 1) is the unique mode of MGn(p1, · · · pn). ⊓⊔

Definition 9 If ξn = (ξ1, ξ2, · · · ξn) is distributed as
MGn(p1, p2, · · · pn), let ξ∗n =

∑n
j=1 ξj , then we say

that ξ∗n is a multi-parameter random variable dis-
tributed as G∗(p1, p2, · · · pn). The probability gener-
ating function of ξ∗n is given by

Gξ∗n(x) =
p1p2 · · · pnxn

1− x+ p1p2 · · · pnxn
. (3)

Remark 10 1) Definition 9 is based on Lemma 3 and
Theorem 5.

2) When n = 1, formula (3) yields Gξ∗1
(x) =

p1x/(1−x+p1x), which is the exact probability gen-
erating function of usual geometric distribution with
parameter p1. It means that G∗(p1, · · · pn) is a gener-
alized geometric distribution.
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Theorem 11 Let ξ∗n be a random variable distributed
as G∗(p1, p2, · · · pn), then its probability distribution
is given by

P (ξ∗n = n+m) =

[m
n
]∑

s=0

(
m− s(n− 1)

s

)
(−1)sρs+1,

where ρ = p1p2 · · · pn, m = 0, 1, · · · . Note that [x]
denotes the greatest integer not exceeding x ∈ R.

Proof. The symbol ρ = p1p2 · · · pn in (3) yields

Gξ∗n(x) =
ρxn

1− x+ ρxn
= ρxn

∞∑
N=0

(x− ρxn)N

= ρxn
∞∑

N=0

N∑
m=0

(
N

m

)
xN−m(−ρxn)m

= ρxn
∞∑

N=0

N∑
m=0

(
N

m

)
(−ρ)mxm(n−1)+N

= ρxn
∞∑

m=0

[m
n
]∑

s=0

(
m− s(n− 1)

s

)
(−ρ)sxm

=

∞∑
m=0

[m
n
]∑

s=0

(
m− s(n− 1)

s

)
(−ρ)sρxm+n

=

∞∑
m=0

[m
n
]∑

s=0

(
m− s(n− 1)

s

)
(−1)sρs+1xm+n

=

∞∑
m=0

P (ξ∗n = m+ n)xm+n.

Obviously, the last equation contains the probability
distribution of ξ∗n. ⊓⊔

Theorem 12 Let ξ∗n be a random variable distributed
as G∗(p1, p2, · · · pn), then the modes of ξ∗n are

mξ∗n = n, n+ 1, · · · , 2n− 1.

Proof. When m ≤ n, for Pm = P (ξ∗n = m), by
formula (3), we can find that

P0 = P1 = · · · = Pn−1 = 0, Pn = p1p2 · · · pn.

When m > n, from (3), we have

Gξ∗n(x) · (1− x+ ρxn) = ρxn,

where ρ = p1p2 · · · pn. Differentiating m times both
sides of the above with respect to x, then setting x = 0
yields

G
(m)
ξ∗n

(0)−mG
(m−1)
ξ∗n

(0) +
(m
n

)
G

(m−n)
ξ∗n

(0)n!ρ = 0.

By Pm = G
(m)
ξ∗n

(0)/m!, we get the recurrence relation

Pm − Pm−1 + ρ · Pm−n = 0,m > n.

Therefore,

Pn = Pn+1 = · · · = P2n−1 > P2n > P2n+1 > · · · .

Theorem 12 has been proven. ⊓⊔

3 The modes of the multinomial dis-
tribution and multivariate Poisson
distribution

Suppose that all the possible outcomes of an indepen-
dent trial are the events e1, e2, · · · , en, n = 1, 2, · · · ,
which are mutually exclusive with respective suc-
cess probabilities p1, p2, · · · , pn,

∑n
l=1 pl = 1. Let

η1, η2, · · · , ηn denote the number of occurrences of
e1, e2, · · · , en in N independent trials respectively,
then the random vector ηn = (η1, · · · , ηn) is said to
be the multinomial distribution with parameter vector
(p1, · · · , pn), denoted by Mn(p1, · · · , pn;N).

Lemma 13 [19] Suppose that ηn = (η1, η2, · · · , ηn)
is a n-dimensional random vector distributed as
Mn(p1, · · · , pn;N), then its joint probability gener-
ating function is

Gηn(x1, · · · , xn) = (p1x1 + · · ·+ pnxn)
N . (4)

And its joint probability distribution is

P (η1 = k1, η2 = k2, · · · , ηn = kn)

=

(
N

k1, k2, · · · , kn

)
pk11 p

k2
2 · · · pknn , (5)

where k1 + k2 + · · ·+ kn = N .

Theorem 14 If the random vector ηn = (η1, · · · , ηn)
is distributed asMn(1/n, · · · , 1/n;N), then its mod-
e(s) denoted by mηn is given by

mηn = (N/n, · · · , N/n)

if N/n ∈ N, and

mηn = ([N/n] + δ1, · · · , [N/n] + δn)

if N/n ̸∈ N, where δk = 0 or 1 (k = 1, · · · , n) and∑n
k=1 δk = N − n[N/n].
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Proof. For n = 3, by formula (5), the probabil-
ity distribution of η3 = (η1, η2, η3) distributed as
M3(1/3, 1/3, 1/3;N) is presented as follows

P (η1 = k1, η2 = k2, η3 = k3) =
N !

k1!k2!k3!

(
1

3

)N

.

Case I: If the number of trials N = 3K,K ∈ N, let
r be the total sum of the positive number from k1 −
K, k2−K and k3−K, and by the fact that k1+ k2+
k3 = 3K, we know that the total sum of the negative
number from k1 −K, k2 −K and k3 −K is −r. Let
∆+

r and ∆−
r be respectively the increase factor and

decrease factor from K!K!K! to k1!k2!k3!, we find:

∆+
r ≥ (K + 1)r,∆−

r < Kr.

Hence,

k1!k2!k3! = K!K!K!
∆+

r

∆−
r
> K!K!K!,

the above yields

K!K!K! = min
k1+k2+k3=N

{k1!k2!k3!}.

Therefore

P (η1 = K, η2 = K, η3 = K) =
N !

K!K!K!

(
1

3

)N

= max
k1+k2+k3=N

{
N !

k1!k2!k3!

(
1

3

)N
}

= max{P (η1 = k1, η2 = k2, η3 = k3)}.

Case II: If the number of trials N = 3K + 1,K ∈ N,
by the similar methods in Case I, noting that ∆+

r and
∆−

r are respectively the increase factor and decrease
factor from (K + 1)!K!K! to k1!k2!k3!, we obtain

∆+
r ≥ (K + 1)r,∆−

r ≤ (K + 1)r,

hence we come to

k1!k2!k3! = (K + 1)!K!K!
∆+

r

∆−
r

≥ (K + 1)!K!K!,

then

P (η1 = K + 1, η2 = K, η3 = K) =

P (η1 = K, η2 = K + 1, η3 = K) =

P (η1 = K, η2 = K, η3 = K + 1) =

=
N !

(K + 1)!K!K!

(
1

3

)N

= max
k1+k2+k3=N

{
N !

k1!k2!k3!

(
1

3

)N
}

= max{P (η1 = k1, η2 = k2, η3 = k3)}.

Case III: If the number of trials N = 3K+2,K ∈ N,
it is not difficult to arrive at

P (η1 = K + 1, η2 = K + 1, η3 = K) =

P (η1 = K + 1, η2 = K, η3 = K + 1) =

P (η1 = K, η2 = K + 1, η3 = K + 1) =

=
N !

(K + 1)!(K + 1)!K!

(
1

3

)N

= max
k1+k2+k3=N

{
N !

k1!k2!k3!

(
1

3

)N
}

= max{P (η1 = k1, η2 = k2, η3 = k3)}.

Combining Cases I, II with III, we conclude that when
n = 3, Theorem 14 holds. One can easily generalize
the conclusion to any integer n ≥ 1. ⊓⊔

Theorem 15 If the random vector ηn = (η1, · · · , ηn)
is distributed asMn(p1, · · · , pn;N) satisfyingNpl ∈
N, l = 1, · · · , n, then the mode of ηn is given by

mηn = (Np1, Np2, · · · , Npn).

Proof. We calculate
N !

(Np1 + 1)!(Np2 − 1)!(Np3)!
pNp1+1
1 pNp2−1

2 pNp3
3

=
N ! · pNp1

1 pNp2
2 pNp3

3

(Np1)!(Np2)!(Np3)!
· Np2
Np1 + 1

· p1
p2

<
N !

(Np1)!(Np2)!(Np3)!
· pNp1

1 pNp2
2 pNp3

3 .

Hence

P (η1 = Np1 + 1, η2 = Np2 − 1, η3 = Np3)

< P (η1 = Np1, η2 = Np2, η3 = Np3).

Similarly, for 0 ≤ Npk + lk ≤ N, lk ∈ Z, k =
1, 2, 3, and l1 + l2 + l3 = 0, we have

P (η1 = Np1+ l1, η2 = Np2+ l2, η3 = Np3+ l3)

≤ P (η1 = Np1, η2 = Np2, η3 = Np3),

with equality if and only if l1, l2, l3 = 0. Hence,
(Np1, Np2, Np3) is the unique mode of multinomi-
al distribution M3(p1, p2, p3;N).

For a fixed n ∈ N, the similar discussion can con-
clude that the unique mode of Mn(p1, · · · , pn;N) is
(Np1, · · · , Npn) if Npl ∈ N, l = 1, · · · , n. ⊓⊔

Remark 16 For any reals p1 > 0, · · · , pn > 0 sat-
isfying p1 + · · · + pn = 1, the mode of multinomi-
al distributionMn(p1, · · · , pn;N) cannot be equal to
(Np1, · · · , Npn) if Npl, l = 1, · · · , n are not all in-
tegers. But we conjecture that the mode is pretty close
to (Np1, · · · , Npn) and we propose it as one of the
open questions in section 5.
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Suppose that ηn+1 = (η1, · · · , ηn+1) is a (n+1)-
dimensional random vector distributed as multinomi-
al distributionMn+1(p1, · · · , pn+1;N). Another ran-
dom we are interest in is ζn = (η1, · · · , ηn). Let
G∗

ζn
(x1, · · · , xn) denote its joint probability generat-

ing function, then we have

Theorem 17 Assume (p1, · · · , pn) → (0, · · · , 0) and
(Np1, · · · , Npn) → (λ1, · · · , λn) asN → ∞, where
λ1 > 0, · · · , λn > 0, then

G∗
ζn(x1, · · · , xn)

N→∞−−−−→ eλ1(x1−1)+···+λn(xn−1).

Proof. By Lemma 3 and formula (4),

G∗
ζn(x1, · · · , xn) = Gηn+1(x1, · · · , xn, 1)

= (p1x1 + · · ·+ pnxn + pn+1)
N

= (p1x1 + · · ·+ pnxn + 1− p1 − · · · − pn)
N

= (1 + p1(x1 − 1) + · · ·+ pn(xn − 1))N

=

1 +

n∑
j=1

pj(xj − 1)


n∑

j=1
N·pj(xj−1)

n∑
j=1

pj(xj−1)

.

Therefore,

G∗
ζn(x1, · · · , xn)

N→∞−−−−→ eλ1(x1−1)+···+λn(xn−1).

This completes the proof. ⊓⊔

Remark 18 Theorem 17 is inspired by Dai [3].

Definition 19 The random vector ζn = (ζ1, · · · , ζn)
is said to have the n-dimensional Poisson distribution
with parameter vector (λ1, · · · , λn) and to be denoted
by MPn(λ1, · · · , λn), if its joint probability generat-
ing function is given by

Gζn(x1, · · · , xn) = eλ1(x1−1)+···+λn(xn−1).

Remark 20 The mean and variance vector of the ran-
dom vector ζn in Definition 19 are Eζn = V arζn =
(λ1, λ2, · · · , λn).

Theorem 21 Let (ζ1, · · · , ζn) be a random vector
distributed as MPn(λ1, · · · , λn), then

P (ζ1 = m1, ζ2 = m2, · · · , ζn = mn)

=
λm1
1 λm2

2 · · ·λmn
n

m1!m2! · · ·mn!
e−(λ1+λ2+···+λn),

where m1,m2, · · · ,mn ∈ {0, 1, · · · }.

Proof. Following the joint probability generating
function of MPn(λ1, · · · , λn), we arrive at

Gζn(x1, · · · , xn)

= e−
∑n

j=1 λj

∞∑
m=0

(λ1x1 + λ2x2 + · · ·+ λnxn)
m

m!

= e
−

n∑
j=1

λj
∞∑

m=0

∑
m1,··· ,mn∋

m1+···+mn=m

1

m!

(
m

m1, · · · ,mn

)
×

λm1
1 λm2

2 · · ·λmn
n xm1

1 xm2
2 · · ·xmn

n

= e−(λ1+···+λn)
∞∑

m=0

∑
m1,m2,··· ,mn∋

m1+m2+···+mn=m

λm1
1 λm2

2 · · ·λmn
n

m1!m2! · · ·mn!
xm1
1 xm2

2 · · ·xmn
n

=

∞∑
m=0

∑
m1,m2,··· ,mn∋

m1+m2+···+mn=m

λm1
1 λm2

2 · · ·λmn
n

m1!m2! · · ·mn!
×

e−(λ1+λ2+···+λn)xm1
1 xm2

2 · · ·xmn
n

=
∑

m1,··· ,mn

λm1
1 · · ·λmn

n

m1! · · ·mn!
e−(λ1+···+λn)xm1

1 · · ·xmn
n ,

following which we can derive the joint probability
distribution. Theorem 21 has been proved. ⊓⊔

Theorem 22 Let ζn = (ζ1, · · · , ζn) be a random vec-
tor distributed as MPn(λ1, · · · , λn), then the modes
of ζn denoted by mζn are

mζn = (m∗
1,m

∗
2, · · · ,m∗

n),

where m∗
s = λs or λs − 1 if λs ∈ N; m∗

s = [λs] if
λs ̸∈ N, s = 1, 2, · · · , n.

Proof. By Theorem 21, we have

P (ζ1 = m1, ζ2 = m2, · · · , ζn = mn)

=

(
λm1
1

m1!

)(
λm2
2

m2!

)
· · ·
(
λmn
n

mn!

)
e
−

n∑
j=1

λj

.

For any fixed reals λ1, λ2, · · · , λn > 0, note that
e−(λ1+λ2+···+λn) is a constant, hence, P (ζ1 =
m1, · · · , ζn = mn) attains its maximum if and on-

ly if
(
λ
m1
1
m1!

)
,
(
λ
m2
2
m2!

)
· · · ,

(
λmn
n
mn!

)
attain their maxima

respectively.
Case I: If λs ∈ N, s = 1, · · · , n, then

λms
s

ms!
=
λs
1

· λs
2

· · · λs
ms

≤ λs
1

· λs
2

· · · λs
λs − 1

=
λs
1

· λs
2

· · · λs
λs − 1

· λs
λs
.
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Hence, when ms = λs − 1 or λs,
λms
s

ms!
, s = 1, · · · , n

attains its maximum.
Case II: If some λs ̸∈ N, s = 1, · · · , n, then

λms
s

ms!
=
λs
1

· λs
2

· · · λs
ms

≤ λs
1

· λs
2

· · · λs
[λs]

.

Hence, when ms = [λs],

λms
s

ms!
, s = 1, · · · , n

attains its maximum. Thus the proof is complete. ⊓⊔

4 The mode of the geometric distri-
bution of order k

In this section, we shall discuss the mode of the geo-
metric distribution of order k. There are many papers
in the literature dealing with how to get its generating
function, moment generating function and probabili-
ty distribution etc, such as Philippou [15], Barry [2]
and Shao [20]. Note that this probability distribution
is defined by success run, which has been the basic
concept in Bernoulli trial. It is a specified sequence
of k consecutive success that may occur at some point
in the series of Bernoulli trials, where k is the length
of it. The run theory has been investigated by many
authors. For more detail about it, the readers are re-
ferred to Feller [7], Fu [8], Han [11], Muselli [14] and
Schwager [18], et al.

Definition 23 [1, 20] Let ξ(k) be the number of tri-
als until the occurrence of the success run of length
k in Bernoulli trials with success probability p, then
ξ(k) is a random variable distributed as the geometric
distribution of order k with parameter p denoted by
Gk(p).

Lemma 24 [20] If ξ(k) is distributed as Gk(p), then
its probability generating function is given by

Gξ(k)(x) =
pkxk − pk+1xk+1

1− x+ qpkxk+1
.

Theorem 25 The probability distribution of the ran-
dom variable distributed as Gk(p) is

P (ξ(k) = m+ k)

=
∑

m1,··· ,mk∋
k∑

l=1
l·ml=m


k∑

l=1

ml

m1, · · · ,mk

(q
p

) k∑
l=1

ml

pm+k,

where m = 0, 1, 2, · · · .

Proof. By Lemma 24, we get

Gξ(k)(x) =
pkxk

1− qx(1 + px+ · · ·+ pk−1xk−1)

=
pkxk

1− q
p(px+ · · ·+ pkxk)

= pkxk
∞∑
n=0

(
q

p

)n

(px+ · · ·+ pkxk)n

=

∞∑
n=0

(
q

p

)n ∑
l1,··· ,lk∋∑k
i=1 li=n

(
n

l1, · · · , lk

)
(px)

k+
k∑

i=1
i·li

=

∞∑
n=0

∑
l1,··· ,lk∋
k∑

i=1
li=n

(
q

p

)n( n

l1, · · · , lk

)
(px)

k+
k∑

i=1
i·li

=

∞∑
m=0

∑
m1,··· ,mk∋
k∑

l=1
l·ml=m


k∑

l=1

ml

m1, · · · ,mk

(q
p

) k∑
l=1

ml

(px)m+k,

then, from the above we can easy come to the proba-
bility distribution of ξ(k). ⊓⊔

Theorem 26 For any a fixed k (k ∈ N), the ge-
ometric distribution of order k has a unique mode
mξ(k),p = k.

Proof. We consider different cases:
Case I: When k = 2, by Lemma 24, we get the prob-
ability generating function of ξ(2) as follows

Gξ(2)(x) =
p2x2 − p3x3

1− x+ qp2x3
. (6)

Let Pn = P (ξ(2) = n), n = 0, 1, · · · be the prob-
ability distribution of ξ(2), then we have

Gξ(2)(x) =
∞∑
n=0

Pnx
n,

Pn = G
(n)
ξ(2)

(0)/n!, n = 0, 1, 2 · · · , (7)

where G(n)
ξ(2)

(0) is the n-th derivative of Gξ(2)(x) at

x = 0, especially, G(0)
ξ(2)

(0) = Gξ(2)(0).
On the other hand, by equations (6) and (7), we

shall get the probability values P0 = P1 = 0, P2 =
p2, P3 = qp2. When n ≥ 4, we consider the following
equation
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Gξ(2)(x) · (1− x+ qp2x3) = p2x2 − p3x3.

Differentiating n times Gξ(2)(x) · (1−x+ qp
2x3) and

p2x2 − p3x3 in the above respectively, then setting
x = 0, we have(n

0

)
G

(n)
ξ(2)

(0)−
(n
1

)
G

(n−1)
ξ(2)

(0)

+
(n
3

)
G

(n−3)
ξ(2)

(0) · 3!qp2 = 0. (8)

Combining (7) with (8), we are able to arrive at
Pn = Pn−1 − qp2 · Pn−3, n ≥ 4, from which we
can derive P3 = P4 > P5 > P6 > · · · . Note that
P0 = P1 = 0, P2 = p2, P3 = qp2, then we have P2 =
max{Pn, n = 0, 1, 2, · · · }. Therefore, mξ(2),p = 2.
Case II: When k = 3, following Lemma 24, the prob-
ability generating function of ξ(3) distributed asG3(p)
is represented as follows

Gξ(3)(x) =
p3x3 − p4x4

1− x+ qp3x4
.

By the formula

Pn = P (ξ(3) = n) = G
(n)
ξ3

(0)/n!, n = 0, 1, · · · , (9)

we shall get

P0 = P1 = P2 = 0, P3 = p3, P4 = qp3.

When n ≥ 5, following the probability generating
function Gξ(3)(x), we have

Gξ(3)(x) · (1− x+ qp3x4) = p3x3 − p4x4,

Differentiating n times both sides of the above, we
arrive at

n∑
r=0

(n
r

)
G

(n−r)
ξ(3)

(x) · (1− x+ qp3x4)(r) = 0.

Let x = 0, we get(n
0

)
G

(n)
ξ(3)

(0)−
(n
1

)
G

(n−1)
ξ(3)

(0)

+
(n
4

)
G

(n−4)
ξ(3)

(0) · 4!qp3 = 0. (10)

By equations (9) and (10), we obtain the recurrence
relation

Pn = Pn−1 − qp3 · Pn−4, n = 5, 6, · · · ,
obviously, by the recurrence, we shall get

P4 = P5 = P6 > P7 > P8 > · · · ,
note that P0 = P1 = P2 = 0, P3 = p3, P4 = qp3,
then we obtain P3 = max{Pn, n = 0, 1, 2, · · · }.
Hence, mξ(3),p = 3.

By the similar proofs of Case I and Case II, we
can conclude that mξ(k),p = k. ⊓⊔

5 Conclusion
In section 2, we introduce the multivariate transition
probability flow graphs methods to study the new
distributions MGn(p1, · · · , pn) and G∗(p1, · · · , pn),
obtain their modes mξn = (1, 1, · · · , 1) and mξ∗ =
n, n+1, · · · , 2n−1. In section 3, for the multinomial
distributionMn(p1, · · · , pn;N), we only get its mode
in some cases. It is still an open question for all oth-
er cases. From the multinomial distribution, we state
the definition of the multivariate Poisson distribution
MPn(λ1, · · · , λn), and then consider its joint prob-
ability distribution and modes. In section 4 we show
that mξ(k),p = k is the unique mode of the geometric
distribution of order k.

Finally, we offer the following open questions to
the interested readers as an objective and challenge for
further study.

Question 1 [10] Let N (k)
n be the number of the suc-

cess run of length k in n Bernoulli trials with success
probability p. The probability distribution of it denot-
ed by Bk(n, p) is called the binomial distribution of
order k with parameter (n,p). We have

P (N (k)
n = r) =

k−1∑
s=0

∑
m1,··· ,mk∋

k∑
l=1

l·ml=n−s−kr


k∑

l=1

ml + r

m1, · · · ,mk, r

(q
p

) k∑
l=1

ml

pn,

where r = 0, 1, · · · , [n/k].
What is the mode of Bk(n, p)?

Question 2 [20] Let ξ(k,r) be the number of trials un-
til the rth occurrence of the success run of length k
in Bernoulli trials with success probability p. Then
ξ(k,r) is a random variable distributed as the nega-
tive binomial distribution of order k with parameter
(r, p) denoted by NBk(r, p). Its probability generat-
ing function is presented as follows

Gξ(k,r)(x) =

(
pkxk − pk+1xk+1

1− x+ qpkxk+1

)r

.

What is the mode of NBk(r, p)?

Question 3 The random variable ζ(k) is said to have
the Poisson distribution of order k with parameter λ
denoted by Pk(λ) if its probability generating function
is given by

Gζ(k)(x) = eλ(x+x2+···+xk−k).
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In addition, its probability distribution is

P (ζ(k) = m) =
∑

m1,m2,··· ,mk

λm1+m2+···+mk

m1!m2! · · ·mk!
e−λk,

where m1 + 2m2 + · · · + kmk = m,m = 0, 1, · · · .
What is the mode of Pk(λ)?

Question 4 What is the mode of multinomial distri-
bution Mn(p1, · · · , pn;N) if Npl, l = 1, · · · , n are
not all integers?
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